Package: AteMeVs 0.1.0

AteMeVs: Average Treatment Effects with Measurement Error and Variable Selection for Confounders

A recent method proposed by Yi and Chen (2023) <doi:10.1177/09622802221146308> is used to estimate the average treatment effects using noisy data containing both measurement error and spurious variables. The package 'AteMeVs' contains a set of functions that provide a step-by-step estimation procedure, including the correction of the measurement error effects, variable selection for building the model used to estimate the propensity scores, and estimation of the average treatment effects. The functions contain multiple options for users to implement, including different ways to correct for the measurement error effects, distinct choices of penalty functions to do variable selection, and various regression models to characterize propensity scores.

Authors:Li-Pang Chen [aut, cre], Grace Yi [aut]

AteMeVs_0.1.0.tar.gz
AteMeVs_0.1.0.zip(r-4.5)AteMeVs_0.1.0.zip(r-4.4)AteMeVs_0.1.0.zip(r-4.3)
AteMeVs_0.1.0.tgz(r-4.5-any)AteMeVs_0.1.0.tgz(r-4.4-any)AteMeVs_0.1.0.tgz(r-4.3-any)
AteMeVs_0.1.0.tar.gz(r-4.5-noble)AteMeVs_0.1.0.tar.gz(r-4.4-noble)
AteMeVs_0.1.0.tgz(r-4.4-emscripten)AteMeVs_0.1.0.tgz(r-4.3-emscripten)
AteMeVs.pdf |AteMeVs.html
AteMeVs/json (API)

# Install 'AteMeVs' in R:
install.packages('AteMeVs', repos = c('https://lchen723.r-universe.dev', 'https://cloud.r-project.org'))

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 288 downloads 4 exports 2 dependencies

Last updated 1 years agofrom:7e7c6f533b. Checks:8 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 27 2025
R-4.5-winOKJan 27 2025
R-4.5-macOKJan 27 2025
R-4.5-linuxOKJan 27 2025
R-4.4-winOKJan 27 2025
R-4.4-macOKJan 27 2025
R-4.3-winOKJan 27 2025
R-4.3-macOKJan 27 2025

Exports:DGEST_ATESIMEX_ESTVSE_PS

Dependencies:MASSncvreg